3.557 \(\int \frac {\sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=204 \[ -\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d} \]

[Out]

-2*(a-b)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*
x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d-2*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(
1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b/d

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 204, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3837, 3832, 4004} \[ -\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(-2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*
Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) - (2*Sqrt[a + b]*Cot[c +
 d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a
+ b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d)

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3837

Int[csc[(e_.) + (f_.)*(x_)]^2/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> -Int[Csc[e + f*x]/Sqrt[
a + b*Csc[e + f*x]], x] + Int[(Csc[e + f*x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, e
, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx &=-\int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx+\int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 d}-\frac {2 \sqrt {a+b} \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 19.30, size = 2189, normalized size = 10.73 \[ \text {Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]^2/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*(b + a*Cos[c + d*x])*Tan[c + d*x])/(b*d*Sqrt[a + b*Sec[c + d*x]]) + ((-(1/(Sqrt[b + a*Cos[c + d*x]]*Sqrt[Se
c[c + d*x]])) - (a*Sqrt[Sec[c + d*x]])/(b*Sqrt[b + a*Cos[c + d*x]]) - (a*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/
(b*Sqrt[b + a*Cos[c + d*x]]))*Sqrt[Sec[c + d*x]]*(-2*(a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a
*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c + d*x]
 + 2*b*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c + d*x]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(a
 + b*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))] - (b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/
(b*d*((1 + Cos[c + d*x])^(-1))^(3/2)*Sqrt[1 + Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*((a*Sin[c + d*x]*(-2*(a +
 b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[Ar
cSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c + d*x] + 2*b*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b
)]*Sec[c + d*x]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(a + b*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))] - (b + a
*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(2*b*((1 + Cos[c + d*x])^(-1))^(3/2)*(b + a*Cos[c + d*x])
^(3/2)*Sqrt[1 + Sec[c + d*x]]) - (3*Sin[c + d*x]*(-2*(a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a
*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c + d*x]
 + 2*b*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c + d*x]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(a
 + b*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))] - (b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/
(2*b*Sqrt[(1 + Cos[c + d*x])^(-1)]*Sqrt[b + a*Cos[c + d*x]]*Sqrt[1 + Sec[c + d*x]]) - (Sec[c + d*x]*(-2*(a + b
)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcS
in[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c + d*x] + 2*b*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]
*Sec[c + d*x]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(a + b*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))] - (b + a*C
os[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])*Tan[c + d*x])/(2*b*((1 + Cos[c + d*x])^(-1))^(3/2)*Sqrt[b +
a*Cos[c + d*x]]*(1 + Sec[c + d*x])^(3/2)) + (-1/2*((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^4) - ((a + b)*Sqrt[(b
 + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c +
d*x]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(
1 + Cos[c + d*x])] - ((a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b
)/(a + b)]*Sec[c + d*x]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*x]
)/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] + a*Sec[(c + d*x)/2
]^2*Sin[c + d*x]*Tan[(c + d*x)/2] - (b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]^2 + (b*Sec[(c + d
*x)/2]^2*Sec[c + d*x]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(a + b*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))])/(
Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[1 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)]) - ((a + b)*Sqrt[Cos[c + d*x]/(1 +
 Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2*Sec[c + d*x]*Sqrt[1
 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)])/Sqrt[1 - Tan[(c + d*x)/2]^2] - 2*(a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[
c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)
/(a + b)]*Sec[c + d*x]*Tan[c + d*x] + 2*b*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c + d*x]*Sq
rt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(a + b*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))]*Tan[c + d*x] - b*EllipticF
[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c + d*x]^2*((1 + Sec[c + d*x])^(-1))^(3/2)*Sqrt[(a + b*Sec[c +
 d*x])/((a + b)*(1 + Sec[c + d*x]))]*Tan[c + d*x] + (b*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Se
c[c + d*x]*Sqrt[(1 + Sec[c + d*x])^(-1)]*((b*Sec[c + d*x]*Tan[c + d*x])/((a + b)*(1 + Sec[c + d*x])) - (Sec[c
+ d*x]*(a + b*Sec[c + d*x])*Tan[c + d*x])/((a + b)*(1 + Sec[c + d*x])^2)))/Sqrt[(a + b*Sec[c + d*x])/((a + b)*
(1 + Sec[c + d*x]))])/(b*((1 + Cos[c + d*x])^(-1))^(3/2)*Sqrt[b + a*Cos[c + d*x]]*Sqrt[1 + Sec[c + d*x]])))

________________________________________________________________________________________

fricas [F]  time = 0.45, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sec \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sec(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

maple [B]  time = 1.40, size = 639, normalized size = 3.13 \[ -\frac {2 \sqrt {\frac {b +a \cos \left (d x +c \right )}{\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )\right )^{2} \left (-1+\cos \left (d x +c \right )\right )^{2} \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right ) \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {\frac {a -b}{a +b}}\right ) b -\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right ) \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {\frac {a -b}{a +b}}\right ) a -\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right ) \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {\frac {a -b}{a +b}}\right ) b +\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {\frac {a -b}{a +b}}\right ) b \sin \left (d x +c \right )-\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {\frac {a -b}{a +b}}\right ) a \sin \left (d x +c \right )-\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sin \left (d x +c \right ) \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {\frac {a -b}{a +b}}\right ) b +a \left (\cos ^{2}\left (d x +c \right )\right )-a \cos \left (d x +c \right )+b \cos \left (d x +c \right )-b \right )}{d \sin \left (d x +c \right )^{5} \left (b +a \cos \left (d x +c \right )\right ) b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x)

[Out]

-2/d*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(1+cos(d*x+c))^2*(-1+cos(d*x+c))^2*((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)
*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*cos(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-
b)/(a+b))^(1/2))*b-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*
cos(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a
*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*cos(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+
b))^(1/2))*b+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos
(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b*sin(d*x+c)-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+c
os(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*sin(d*x+c)-(cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+
c),((a-b)/(a+b))^(1/2))*b+a*cos(d*x+c)^2-a*cos(d*x+c)+b*cos(d*x+c)-b)/sin(d*x+c)^5/(b+a*cos(d*x+c))/b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{{\cos \left (c+d\,x\right )}^2\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(1/2)),x)

[Out]

int(1/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec ^{2}{\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**2/sqrt(a + b*sec(c + d*x)), x)

________________________________________________________________________________________